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Abstract. Using the method of asymptotic integration of the equations of the theory of elasticity, the axisym-

metric problem of the theory of elasticity for a radially inhomogeneous transversally isotropic cylinder of small

thickness is studied. Suppose that the elastic moduli are arbitrary continuous functions of the radius of the

cylinder. It is assumed that the side part of the cylinder is fixed, and stresses are set at the ends of the cylinder,

leaving the cylinder in equilibrium. Solutions have been determined having the nature of a boundary layer and are

localized at the ends of the cylinder. The first terms of its asymptotic expansion coincide with the Saint-Venant

edge effect in the theory of plates. The nature of the stress-strain state has been studied. It is shown that some

boundary layer solutions may not be extinguished by propagating far from the ends.
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1 Introduction

In the theory of shells, the study of inhomogeneous shells occupies a special place. Despite the
existence of a number of applied theories of inhomogeneous shells, the areas of their applicability
have received limited investigation. The existence of various applied theories for inhomogeneous
shells poses a problem for studying from the position of equations of the theory of elasticity.

The study of problems of elasticity theory for a cylinder has been the main focus of a number
of studies (Tokovyy & Ma, 2019). An asymptotic theory has been developed for a transversally
isotropic cylinder of small thickness (Mekhtiev, 2019). The Almansi-Michell problem for an
inhomogeneous anisotropic cylinder was studied using a numerical-analytical method (Lin &
Dong, 2006). The influence of material heterogeneity on the stress-strain state of the cylinder
was studied (Ieşan & Quintanilla, 2007; Jiann, 2008). Based on the spline collocation method
and the finite element method, the stress-strain state of a radially inhomogeneous cylinder was
studied (Grigorenko & Yaremchenko, 2016; 2019). An analysis of a radially inhomogeneous
cylinder subjected to uniform internal pressure is studied (Tutuncu & Temel, 2009). The ther-
momechanical behavior of hollow radially inhomogeneous cylinders has been studied (Jiann-Quo,
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2001; Liew et al., 2003). The behavior of the solution to a problem of elasticity theories for a
radially inhomogeneous transversally isotropic cylinder has been studied using the asymptotic
method (Akhmedov & Akperova, 2011). The purpose of this work is to study the behavior of
solutions to the problem of elasticity theory for a transversally isotropic cylinder with a fixed
lateral surface.

2 Statement of Boundary Value Problems for a Radially
Inhomogeneous Transversal Isotropic Cylinder

Let us consider an axisymmetric elasticity problem for a radially inhomogeneous transversely
isotropic cylinder of small thickness. Let’s say a cylinder occupies a volume (Fig.1)

Γ = {r ∈ [r1; r2], ϕ ∈ [0; 2π], z ∈ [−L;L]}

Figure 1: Radially inhomogeneous transversal isotropic cylinder

The system of equilibrium equations in the absence of mass forces in the cylindrical coordi-
nate system r, ϕ, z has the form (Lur’e, 2005)

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σϕϕ

r
= 0, (1)

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r

= 0. (2)

Here σrr, σrz, σzz, σϕϕ - are components of the stress tensor, which are expressed through dis-
placement vectors ur = ur(r, z), uz = uz(r, z) as follows (Mekhtiev, 2019)

σrr = A11
∂ur
∂r

+A12
ur
r

+A13
∂uz
∂z

, (3)

σϕϕ = A12
∂ur
∂r

+A11
ur
r

+A13
∂uz
∂z

, (4)

σzz = A13(
∂ur
∂r

+
ur
r

) +A33
∂uz
∂z

, (5)
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σrz = A44(
∂ur
∂z

+
∂uz
∂r

). (6)

Here Aij are the elasticity moduli.

Substituting (3)-(6) into (1), (2) the equation of equilibrium in displacements is obtained

∂

∂ρ

[
e−ερ(b11

∂uρ
∂ρ

+ εb12uρ) + εb13
∂uξ
∂ξ

]
+

+ εe−ερ(b11 − b12)(
∂uρ
∂ρ
− εuρ) + ε2eερb44

∂2uρ
∂ξ2

+ εb44
∂2uξ
∂ρ∂ξ

= 0,

(7)

∂

∂ρ

[
b44(ε

∂uρ
∂ξ

+ e−ερ
∂uξ
∂ρ

)

]
+ εb13(

∂2uρ
∂ρ∂ξ

+ ε
∂uρ
∂ξ

)+

+ ε2eερb33
∂2uξ
∂ξ2

+ εb44(ε
∂uρ
∂ξ

+ e−ερ
∂uξ
∂ρ

) = 0.

(8)

Here ρ = 1
ε ln

(
r
r0

)
, ξ = z

r0
- are new dimensionless variables; ε = 1

2 ln
(
r2
r1

)
- is a small param-

eter characterizing the thickness of the cylinder; r0 =
√
r1r2, ρ ∈ [−1; 1], ξ ∈ [−l; l],

(
l = L

r0

)
;uρ =

ur
r0
, uξ = uz

r0
, bij =

Aij

G0
– are dimensionless quantities, G0 - is some characteristic module, for ex-

ample G0 = max|Aij |
Assume that the elastic moduli b11 = b11(ρ), b12 = b12(ρ), b33 = b33(ρ), b13 = b13(ρ), b44 =

b44(ρ) is an arbitrary positive continuous functions of ρ a variable whose values can vary within
the same order of magnitude.

Consider that the side surface of the cylinder is fixed, i.e.

uρ|ρ=±1 = 0;uξ|ρ=±1 = 0, (9)

and the boundary conditions are specified at the ends of the cylinder

σρξ|ξ=±l = f1s(ρ), σξξ|ξ=±l = f2s(ρ). (10)

Here σρξ = σrz
G0
, σξξ = σzz

G0
- are dimensionless quantities; f1s(ρ), f2s(ρ)(s = 1, 2) - are sufficiently

smooth functions satisfying equilibrium conditions.

3 Construction of Solutions

Looking for solution (7), (8) in the form

uρ(ρ, ξ) = u(ρ)m′(ξ);uξ(ρ, ξ) = w(ρ)m(ξ), (11)

where

m′′(ξ)− µ2m(ξ) = 0 (12)

and µ is the spectral parameter.

Substituting (11) into (7)-(9), and taking into account (12)

[e−ερ(b11u
′(ρ) + εb12u(ρ)) + εb13w(ρ)]′ + εe−ερ(b11 − b12)(u′(ρ)− εu(ρ))+

+εb44w
′(ρ) + µ2ε2eερb44u(ρ) = 0,

(13)

[b44(e
−ερw′(ρ) + µ2εu(ρ))]′ + εb44e

−ερw′(ρ)+
+εµ2 × [b13(u

′(ρ) + εu(ρ)) + εb44u(ρ) + εeερb33w(ρ)] = 0,
(14)
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u(ρ)|ρ=±1 = 0, (15)

w(ρ)|ρ=±1 = 0. (16)

To solve (13)-(16), an asymptotic method based on three iterative processes (Goldenweiser,
1963; Akhmedov & Akperova, 2011; Akhmedov & Sofiyev, 2019) is used. The first iteration
process corresponds to trivial homogeneous solutions. Solutions that have the nature of an edge
effect, corresponding to the second asymptotic process for a cylinder with a fixed lateral surface,
do not exist.

Based on the third iterative process, looking for solution (13)-(16) in the form

u(ρ) = ε2β−10 (u0(ρ) + εu1(ρ) + ...), (17)

w(ρ) = ε(w0(ρ) + εw1(ρ) + ...), (18)

µ = ε−1(β0 + εβ1 + ...). (19)

Substituting (17)-(19) into (13)-(16), for the first terms of the expansion

[b11u
′
0(ρ) + b13w0(ρ)]′ + b44(w

′
0(ρ) + µ20u0(ρ)) = 0, (20)

[b44(w
′
0(ρ) + µ20u0(ρ))]′ + µ20(b13u

′
0(ρ) + b33w0(ρ)) = 0, (21)

u0(ρ)|ρ=±1 = 0, (22)

w0(ρ)|ρ=±1 = 0. (23)

Spectral problem (20)-(23) describes the potential solution of a transversely isotropic plate
that is non-uniform in thickness. In contrast to the isotropic case, for a transversely isotropic
plate of non-uniform thickness, β0k can also take on purely imaginary values (Ustinov, 2006).

By the substitution:

u0 = −β−30 (p0ψ
′′)′ + β−10 p2ψ

′ + β−10 (p1ψ)′, (24)

w0 = β−20 p0ψ
′′ − p1ψ, (25)

spectral problem (20)-(23) reduces to the following

(p0ψ
′′)′′ − β20 [(p1ψ)′′ + p1ψ

′′ + (p2ψ
′)′] + β40p3ψ = 0, (26)

(−β−30 (p0ψ
′′)′ + β−10 p2ψ

′ + β−10 (p1ψ)′)|ρ=±1 = 0, (27)

(β−20 p0ψ
′′ − p1ψ)|ρ=±1 = 0, (28)

where p0 = b11θ, p1 = b13θ, p2 = b−144 , p3 = b33θ, θ = (b213 − b11b33)−1.
Problems (26)-(28) are the generalization of the spectral problem of P.F. Papkovich to the

inhomogeneous transversely isotropic case (Akhmedov & Sofiyev, 2019).
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The solutions corresponding to the third iterative process have the form

uρ(ρ; ε) = ε2
∞∑
k=1

[
−β−40k (p0ψ

′′
k)′ + β−20k (p2ψ

′
k + (p1ψk)

′) +O(ε)
]
m′k(ξ), (29)

uξ(ρ; ξ) = ε
∞∑
k=1

[
β−20k p0ψ

′′
k − p1ψk +O(ε)

]
mk(ξ). (30)

Here mk(ξ) = Ckch(µkξ) +Dksh(µξ), Ck and Dk are arbitrary constants.

For stresses the following asymptotic expressions are obtained

σρρ = ε
∞∑
k=1

(−ψk +O(ε))m′k(ξ), (31)

σρξ =
∞∑
k=1

(ψ′k +O(ε))mk(ξ), (32)

σξξ = ε

∞∑
k=1

(−β−20k ψ
′′
k +O(ε))m′k(ξ), (33)

σ∗ϕϕ = ε
∞∑
k=1

[(b13p0 − b12p1)β−20k ψ
′′
k + (b12p3 − b13p1)ψk +O(ε)]m′k(ξ). (34)

Here σρρ = σrr
G0
, σ∗ϕϕ =

σϕϕ

G0
- are dimensionless quantities.

The third asymptotic process is determined by solutions (29), (30), which have the nature
of a boundary layer. The first terms (29), (30) are equivalent to the Saint-Venant edge effect
of an inhomogeneous transversely isotropic plate. For purely imaginary β0k, the Saint-Venant
boundary layer damps very weakly and solutions (29), (30) should be classified as penetrat-
ing solutions. Therefore, in this case, the stress-strain state of the transversally isotropic and
isotropic cylinders is qualitatively different. When β0k is not purely imaginary, the general pic-
ture of the stress-strain state is qualitatively similar to the corresponding picture for isotropic
radially inhomogeneous cylinders. Quantitatively, they differ in the rate of attenuation of the
Saint-Venant boundary layers.

To determine the constants Ck andDk, Lagrange’s variational principle (Lur’e, 2005; Mekhtiev,
2019) is used. The variational principle takes the following form

2∑
s=1

∫ 1

−1
[(σρξ − f1s)δuρ + (σξξ − f2s)δuξ]|ξ=±le2ερdρ = 0. (35)

Substituting (29), (30), (32), (33) into (35) and considering δCk, δDk to be independent
variations, to determine Ck and Dk an infinite system of equations is obtained

∞∑
k=1

F
(1)
jk Ck0 = τ1j , (36)

F
(1)
jk =β−10k sh(

β0kl

ε
)sh(

β0jl

ε
)

∫ 1

−1
ψ′′k [−β−20j p0ψ

′′
j + p1ψj ]dρ+

+ β−10j ch(
β0jl

ε
)ch(

β0kl

ε
)

∫ 1

−1
ψk[p1ψ

′′
j − β20jp3ψj ]dρ,
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τ1j =
1

2
β0jch(

β0jl

ε
)

∫ 1

−1
[−β−40j (p0ψ

′′
j )′ + β−20j (p2ψ

′
j + (p1ψj)

′)](f11(ρ) + f12(ρ))dρ+

+
1

2
sh(

β0jl

ε
)

∫ 1

−1
(f22(ρ)− f21(ρ))(β−20j p0ψ

′′
j − p1ψj)dρ,

∞∑
k=1

F
(2)
jk Dk0 = τ2j , (37)

F
(2)
jk =β−10k ch(

β0kl

ε
)ch(

β0jl

ε
)

∫ 1

−1
ψ′′k [−β−20j p0ψ

′′
j + p1ψj ]dρ+

+ β−10j sh(
β0jl

ε
)sh(

β0kl

ε
)

∫ 1

−1
ψk[p1ψ

′′
j − β20jp3ψj ]dρ,

τ2j =
1

2
β0jsh(

β0jl

ε
)

∫ 1

−1
[−β−40j (p0ψ

′′
j )′ + β−20j (p2ψ

′
j + (p1ψj)

′)](f12(ρ)− f11(ρ))dρ+

+
1

2
ch(

β0jl

ε
)

∫ 1

−1
(β−20j p0ψ

′′
j − p1ψj)(f21(ρ) + f22(ρ))dρ,

Ck = Ck0 + εCk1 + ..., Dk = Dk0 + εDk1 + ...

The definition of constants Ckp, Dkp(p = 1, 2, ...) invariably comes down to systems whose
matrices coincide with the matrices of systems (36), (37).

For (36), (37) solvability is studied (Ustinov, 2006).

4 Numerical analysis

As an example, consider the problem of the stress-strain state of a radially inhomogeneous and
homogeneous cylinder of small thickness.

Assume that the side part of the cylinder is fixed, and the boundary conditions are specified
at the ends of the cylinder

σrz = Ar, σzz = A(2r2 + 3r), z = −1.5

σrz = Ar2, σzz = A(r2 + 4r), z = 1.5

For a radially inhomogeneous cylinder the following cases are considered
a) elastic moduli change linearly along the radius (increasing elastic moduli): G = G0r,

λ = λ0r;
b) elastic moduli change inversely proportional to the laws along the radius (declining elastic

moduli): G = G0
r , λ = λ0

r .
Let’s study the following two cases:
1. Area occupied by the cylinder Γ = {r ∈ [1; 1.5], ϕ ∈ [0; 2π], z ∈ [−1.5; 1.5]}
The parameter characterizing the thickness of the cylinder is equal to ε = 0, 2.
Figures 2-4 show the distributions along the thickness (along the center line) of displacement

ur, uz, stress σrz for a homogeneous and radially inhomogeneous cylinder.
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Figure 2: Distributions of ur along the center line for ε = 0.2

Figure 3: Distributions of uz along the center line for ε = 0.2

For an inhomogeneous transverse-isotropic cylinder whose elasticity coefficients vary linearly
with respect to the radius, the distribution of ur along the thickness takes its largest value at a
distance of 1.15 from the inner surface, and its smallest value at a distance of 0.0794 from the
outer surface. For a non-homogeneous transverse-isotropic cylinder whose elasticity coefficients
vary inversely proportional to the radius, the distribution of ur along the thickness takes its
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smallest value at a distance of 1.0615 from the inner surface, and its largest value at a distance
of 0.1646 from the outer surface. For a homogeneous transverse-isotropic cylinder at a distance of
1.2502 from the inner surface The distribution of ur along the thickness increases until r=1.2502,
and decreases from that point to the outer surface. The distribution of ur along the thickness
is qualitatively different for homogeneous and non-homogeneous transverse-isotropic cylinders
(Fig. 2).

The distribution of uz along the thickness qualitatively follows the same law (quadratic law),
and the convexity of the parabolas describing those distributions is directed downwards (Fig.
3).

For homogeneous and non-homogeneous cylinders, the distribution of σrz along the thickness
occurs according to the same law, and they differ from each other only quantitatively (Fig. 4).

Figure 4: Distributions of σrz along the center line for ε = 0.2

2. Area occupied by a cylinder Γ = {r ∈ [1; 1.05], ϕ ∈ [0; 2π], z ∈ [−1.5; 1.5]}.
The parameter characterizing the thickness of the cylinder is ε = 0.02.

Figures 5-7 show the distribution of thickness ur, uz, σrz for homogeneous and radially inho-
mogeneous cylinders at ε = 0.02.

For an inhomogeneous transverse-isotropic cylinder whose elasticity coefficients vary linearly
with respect to the radius, the distribution of ur along the thickness takes its largest value at a
distance of 1.025 from the inner surface, and its smallest value at a distance of 1.009 from the
inner surface and 0.009 from the outer surface. For a uniform cylinder, the thickness distribution
of ur takes its largest value at a distance of 1.025 from the inner surface, and its smallest value
at distances of 1.0091 from the inner surface and 1.04093 from the outer surface. For non-
homogeneous cylinders, whose coefficients of elasticity vary linearly with respect to the radius,
the distribution of ur along the thickness qualitatively follows the same law. When the elasticity
coefficients change inversely proportional to the radius, the distribution of ur along the thickness
takes rather small values (Fig. 5).
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Figure 5: Distributions of ur along the center line for ε = 0.02

Figure 6: Distributions of uz along the center line for ε = 0.02
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Figure 7: Distributions of σrz over the thickness of the cylinder in the case of ε = 0.02

The distribution of uz along the thickness occurs according to the quadratic law for homo-
geneous and non-homogeneous cylinders. Those distributions differ only quantitatively (Fig.
6).

The distribution of σrz along the thickness occurs with a linear law for homogeneous and
non-homogeneous cylinders and they almost coincide (Fig. 7).

From the analysis of numerical results it follows that the heterogeneity of the material can
have a significant impact on the stress-strain state of the cylinder.

5 Conclusion

Based on an asymptotic analysis, it was found that when the lateral surface of a radially inho-
mogeneous transversally isotropic cylinder is fixed, the stress-strain state is composed only of a
solution that has the nature of a boundary layer. Some boundary layer solutions attenuate very
weakly and they can penetrate quite deeply away from the ends of the cylinder. Asymptotic
formulas are obtained to calculate the stress-strain state of a radially inhomogeneous cylinder.
As a result of the numerical calculation, the effect of the inhomogeneity of the material on the
stress strain state of the transversally isotropic cylinder with small thickness is studied. It is
determined that the assumption of the homogeneity of the material does not take into account
some of its mechanical properties, and the inhomogeneity of the material is one of the main
properties affecting the stress-strain state of elastic bodies.
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